Published in

Wiley, Neuromethods, p. 243-264, 2014

DOI: 10.1007/978-1-4939-1059-5_11

Links

Tools

Export citation

Search in Google Scholar

Integrated Measurements of Electrical Activity, Oxygen Tension, Blood Flow, and Ca2+-Signaling in Rodents In Vivo

Journal article published in 2013 by Claus Mathiesen, Kirsten Thomsen, Martin Lauritzen ORCID
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Red circle
Preprint: archiving forbidden
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

In order to assess perfusion and metabolic responses in relation to neural function, the cellular signaling network, including the types of neurons and astrocytes involved, and the timing of their activation need to be known/specified. Here, we present the basis for measuring brain activity and metabolism in rats and mice, which covers basic electrophysiological indicators of neuronal function, a short description of the methods commonly used for recording electrophysiological signals, examples of data analysis and (a brief look at the limitations of the methods. This chapter describes animal preparation, the origin of extracellularly recorded electrical signals, with special regard to the EEG, local field potentials, and spikes (action potentials?) in rodent preparations. We also describe methods for recording cerebral blood flow (CBF), tissue partial pressure of oxygen (tpO2), and cytosolic calcium transients. Lastly, we give examples of protocols in which electrophysiology, blood flow, cerebral rate of oxygen metabolism (CMRO2), and calcium transients have been studied together.