Published in

American Institute of Physics, Applied Physics Letters, 7(102), p. 073101

DOI: 10.1063/1.4790646

Links

Tools

Export citation

Search in Google Scholar

Lasing in nanoimprinted two-dimensional photonic crystal band-edge lasers

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

We demonstrate optically pumped polymer band-edge lasers based on a two-dimensional photonic crystal slab fabricated by nanoimprint lithography (NIL). Lasing was obtained at the photonic band-edge, where the light exhibits a low group velocity at the Γ point of the triangular lattice photonic crystal band structure. The active medium was composed of a dye chromophore-loaded polymer matrix directly patterned in a single step by nanoimprint lithography. Plane-wave and finite difference time domain algorithms were used to predict experimental lasing frequencies and the lasing thresholds obtained at different Γ points. A low laser threshold of 3 μJ/mm2 was achieved in a defect-free photonic crystal thus showing the suitability of nanoimprint lithography to produce cost-efficient optically pumped lasers.