Published in

Wiley, American Journal of Botany, 10(94), p. 1696-1705, 2007

DOI: 10.3732/ajb.94.10.1696

Links

Tools

Export citation

Search in Google Scholar

Effects of floral display size and biparental inbreeding on outcrossing rates in Delphinium barbeyi (Ranunculaceae)

Journal article published in 2007 by Charles F. Williams ORCID
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Floral display size represents a tradeoff between the benefits of increased pollinator visitation and the quantity of pollen received vs. the costs of increased self-pollination and reduced pollination quality. Plants with large floral displays often are more attractive to pollinators, but pollinators visit more flowers per plant. Intraplant foraging movements should increase self-pollination through geitonogamy, lowering outcrossing rates in large plants. Local genetic structure should also increase inbreeding and decrease outcrossing estimates, if pollinators move between neighboring, related plants. These predictions were tested in a population of larkspurs (Delphinium barbeyi) in Colorado. Allozymes were used to estimate outcrossing rates of plants varying in display size. Floral displays varied widely (2-1400 flowers; 1-26 inflorescences per plant), and outcrossing rate decreased significantly with increasing display size. Large, multistalked plants self over twice as frequently as single-stalked plants (46 vs. 21%). Local population structure is significant, and biparental inbreeding depresses outcrossing in plants surrounded by genetically similar neighbors. Protandry, coupled with stereotypical bottom-up pollinator foraging, reduces self-fertilization by autogamy or geitonogamy within inflorescences. Selfing is predominantly (>60%) by geitonogamy between inflorescences in large plants. Geitonogamy may be a significant cost to plants with large floral displays if inbreeding depression and/or pollen and ovule discounting results. If so, floral display size, particularly inflorescence number, may be under contrasting selection for pollination quantity vs. quality.