Dissemin is shutting down on January 1st, 2025

Published in

Oxford University Press, Medical Mycology, 5(53), p. 493-504, 2015

DOI: 10.1093/mmy/myv012

Links

Tools

Export citation

Search in Google Scholar

Morphology and its underlying genetic regulation impact the interaction between Cryptococcus neoformans and its hosts

Journal article published in 2015 by Jianfeng Lin, Alexander Idnurm ORCID, Xiaorong Lin
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Cryptococcus neoformans is a fungus that causes the majority of fatal cryptococcal meningitis cases worldwide. This pathogen is capable of assuming different morphotypes: yeast, pseudohypha, and hypha. The yeast form is the most common cell type observed clinically. The hyphal and pseudohyphal forms are rarely observed in the clinical setting and are considered attenuated in virulence. However, as a ubiquitous environmental pathogen, Cryptococcus interacts with various organisms, and it is known to be parasitic to different hosts. Capitalizing on recent discoveries, morphogenesis regulators were manipulated to examine the impact of cell shape on the cryptococcal interaction with three different host systems: the soil amoeba Acanthamoeba castellanii (a protist), the greater wax moth Galleria mellonella (an insect), and the murine macrophage cell line J774A.1 (mammalian cells). The regulation of Ace2 and morphogenesis (RAM) pathway is a highly conserved pathway among eukaryotes that regulates cytokinesis. Disruption of any of five RAM components in Cryptococcus renders cells constitutively in the pseudohyphal form. The transcription factor Znf2 is the master activator of the yeast to hyphal transition. Deletion of ZNF2 locks cells in the yeast form, while overexpression of this regulator drives hyphal growth. Genetic epistasis analyses indicate that the RAM and the Znf2 pathways regulate distinct aspects of cryptococcal morphogenesis and independently of each other. These investigations using the Cryptococcus RAM and ZNF2 mutants indicate that cell shape, cell size, and likely cell surface properties weigh differently on the outcome of cryptococcal interactions with different hosts. Thus, certain traits evolved in Cryptococcus that are beneficial within one host might be detrimental when a different host is encountered.