Published in

American Institute of Physics, Journal of Applied Physics, 6(81), p. 2686-2692, 1997

DOI: 10.1063/1.363969

Links

Tools

Export citation

Search in Google Scholar

Continuing degradation of the SiO2/Si interface after hot hole stress

Journal article published in 1997 by I. S. Al kofahi, Is Alkofahi, Jf F. Zhang ORCID, G. Groeseneken
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

This article reports new experimental results on the continuing interface trap generation post-hot hole injection and investigates the generation mechanism. The generation post-hole injection is found to be two orders of magnitude slower than that post-irradiation and cannot be satisfactorily explained by the transportation of hydrogen species across the gate oxide. The role played by the recombination of trapped holes with free electrons is examined. There is a lack of correlation between the trapped hole removal and the interface trap creation, which is against the prediction of the trapped hole conversion model. The results indicate that the interface traps generated during and post-stress originate from two different defects. The defect responsible for post-stress generation is excited by hole injection and then converted into an interface trap if a positive gate bias is applied. It is found that generation in a poly-Si gated metal–oxide–semiconductor field effect transistor behaves differently from that in an Al-gated device. The possible causes for this difference are discussed. © 1997 American Institute of Physics.