Dissemin is shutting down on January 1st, 2025

Published in

Wiley, Experimental Physiology, 2(96), p. 85-93, 2010

DOI: 10.1113/expphysiol.2010.055236

Links

Tools

Export citation

Search in Google Scholar

Maturation-related changes in the pattern of renal sympathetic nerve activity from fetal life to adulthood

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Sympathetic nerve activity (SNA) has two main properties, the presence of co-ordinated bursts of activity, indicative of many nerve fibres firing at a similar time, and entrainment of the bursts to the cardiac cycle, due to inhibitory input from baroreceptors to a network of cell groups within the CNS. Although this patterning is used as a 'gold standard' for the identification of successful nerve recordings, the maturation of these basic features of SNA from fetal life to adulthood has not been investigated. Using a telemetry-based nerve amplifier, renal SNA (RSNA) was recorded in preterm (99 ± 1 days gestation; term 147 days) and near-term fetal sheep (119 ± 0 days gestation), without anaesthesia or paralysis, and contrasted with RSNA recorded in adult sheep. All three age groups showed a classic bursting pattern of RSNA and co-ordination of bursts with the cardiac cycle. However, the delay between diastole and the next peak in RSNA was longest in preterm fetuses (319 ± 1 ms), compared with near-term fetuses (250 ± 13 ms), and shortest in the adult sheep (174 ± 38 ms). This was independent of the maturational decrease in heart rate. The near-term fetuses showed a marked but sleep-state-dependent increase in resting RSNA compared with preterm fetuses. Although entrainment with the pressure pulse suggests that the intricate circuitry within the CNS is developed in the preterm fetus, the decrease in the length of the delay suggests continuing maturation of this key feature of RSNA in the last third of gestation and after birth.