Published in

American Physical Society, Physical Review A, 3(78), 2008

DOI: 10.1103/physreva.78.033607

Links

Tools

Export citation

Search in Google Scholar

Quantum Monte Carlo study of one-dimensional trapped fermions with attractive contact interactions

Journal article published in 2008 by Michele Casula, Dm M. Ceperley ORCID, Erich J. Mueller
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Using exact continuous quantum Monte Carlo techniques, we study the zero and finite temperature properties of a system of harmonically trapped one dimensional spin 1/2 fermions with short range interactions. Motivated by experimental searches for modulated Fulde-Ferrel-Larkin-Ovchinikov states, we systematically examine the impact of a spin imbalance on the density profiles. We quantify the accuracy of the Thomas-Fermi approximation, finding that for sufficiently large particle numbers (N > 100) it quantitatively reproduces most features of the exact density profile. The Thomas-Fermi approximation fails to capture small Friedel-like spin and density oscillations and overestimates the size of the fully paired region in the outer shell of the trap. Based on our results, we suggest a range of experimentally tunable parameters to maximize the visibility of the double shell structure of the system and the Fulde-Ferrel-Larkin-Ovchinikov state in the one dimensional harmonic trap. Furthermore, we analyze the fingerprints of the attractive contact interactions in the features of the momentum and pair momentum distributions. Comment: 11 pages, 10 figures