Published in

Elsevier, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 4(69), p. 1287-1291, 2008

DOI: 10.1016/j.saa.2007.07.031

Links

Tools

Export citation

Search in Google Scholar

A selective spectrophotometric method for determination of rosoxacin antibiotic using sodium nitroprusside as a chromogenic reagent

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

A selective spectrophotometric method for the determination of rosoxacin (ROS), a 4-quinolone antimicrobial agent, has been developed and validated. The method was based on the reaction of ROS with alkaline sodium nitroprusside (SNP) reagent at room temperature forming a red colored chromogen measured at 455 nm. The conditions affecting the reaction (SNP concentration, pH, color-developing time, temperature, diluting solvent and chromogen stability time) were optimized. Under the optimum conditions, good linear relationship (r=0.9987) was obtained between the absorbance and the concentration of ROS in the range of 20-50 microg ml(-1). The assay limits of detection and quantitation were 2.5 and 8.4 microg ml(-1), respectively. The method was successfully applied to the analysis of bulk drug and laboratory-prepared tablets; the mean percentage recoveries were 100.1+/-0.33 and 101.24+/-1.28%, respectively. The results were compared favourably with those obtained by the reported method; no significant difference in the accuracy and precision as revealed by the accepted values of t- and F-tests, respectively. The robustness and ruggedness of the method was checked and satisfactory results were obtained. The proposed method was found to be highly selective for ROS among the fluoroquinolone antibiotics. The reaction mechanism was proposed and it proceeded in two steps; the formation of nitroferrocyanide by the action of sodium hydroxide alkalinity on SNP and the subsequent formation of the colored nitrosyl-ROS derivative by the attack at position 6 of ROS.