Dissemin is shutting down on January 1st, 2025

Published in

Springer Verlag, Nano Research, 8(7), p. 1188-1194

DOI: 10.1007/s12274-014-0481-4

Links

Tools

Export citation

Search in Google Scholar

Straight and kinked InAs nanowire growth observed in situ by transmission electron microscopy

Journal article published in 2014 by Filip Lenrick, Martin Ek ORCID, Knut Deppert, Lars Samuelson, L. Reine Wallenberg
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Live observations of growing nanowires using in situ transmission electron microscopy (TEM) is becoming an increasingly important tool for understanding the dynamic processes occurring during nanowire growth. Here we present observations of growing InAs nanowires, which constitute the first reported in situ growth of a In-V compound in a transmission electron microscope. Real time observations of events taking place over longer growth lengths were possible due to the high growth rates of up to 1 nm/s that were achieved. Straight growth (mainly in aOE (c) 111 > B directions) was observed at uniform temperature and partial pressure while intentional fluctuations in these conditions caused the nanowires to form kinks and change growth direction. The mechanisms behind the kinking are discussed in detail. In situ observations of nanowire kinking has previously only been reported for nonpolar diamond structure type materials (such as Si), but here we present results for a polar zinc blende structure (InAs). In this study a closed cell with electron and X-ray transparent a-SiN windows was used in a conventional high resolution transmission electron microscope, enabling high resolution imaging and compositional analysis in between the growth periods.