Published in

Materials Research Society, Materials Research Society Symposium Proceedings, (1040), 2007

DOI: 10.1557/proc-1040-q03-02

Links

Tools

Export citation

Search in Google Scholar

Structural Analysis in Low-V-defect Blue and Green GaInN/GaN Light Emitting Diodes

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Red circle
Preprint: archiving forbidden
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

AbstractIn this study, we characterized the structural defects in blue and green GaInN/GaN LEDs grown on c-plane bulk GaN and sapphire substrates. Low density large V-defects with diameters around 600 nm were found in the blue LEDs on bulk GaN. They were initiated by edge-type threading dislocations (TDs) around the homoepitaxial growth interface. On the other hand, a high density 7×109 cm−2 of smaller V-defects with sidewalls on {1101} facets was observed in the active region of green LEDs on sapphire. Their diameter ranges from 150 to 200 nm. Misfit dislocations (MDs) generated in the quantum wells are found to initiate these V-defects. With optimizing the epitaxial growth conditions, the generation of MDs and their smaller V-defects was largely suppressed. As a result, the light output power improved by one order of magnitude. For green LEDs on bulk GaN, another unique type of defect was found in the active region: an inclined dislocation pair (IDP). In it a pair of dislocations propagate at a tilt angle of 18 to 23° from the [0001] growth direction towards <1100>. This defect seems to be a path of strain relief in the high indium composition quantum wells.