Published in

American Society for Clinical Investigation, Journal of Clinical Investigation, 9(103), p. 1317-1327, 1999

DOI: 10.1172/jci4705

Links

Tools

Export citation

Search in Google Scholar

Memory B lymphocytes from secondary lymphoid organs interact with E-selectin through a novel glycoprotein ligand

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Red circle
Preprint: archiving forbidden
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Recirculation of B lymphocytes through the secondary lymphoid organs is key for recognition and response to foreign antigen. B lymphocytes within secondary lymphoid organs comprise a heterogeneous population of cells at distinct differentiation stages. To ascribe a particular adhesive behavior to discrete B-cell subsets within secondary lymphoid organs, we investigated their functional interaction with endothelial selectins under flow. We describe herein the characterization of a subset of human tonsillar B cells that interact with E-selectin but not P-selectin. E-selectin-interacting B cells had a phenotype of non-germinal center (CD10(-), CD38(-), CD44(+)), memory (IgD-) cells. Furthermore, FucT-VII was expressed selectively in CD44(+) E-selectin-adherent B lymphocytes. B-cell rolling on E-selectin required sialic acid but was independent of previously described selectin ligands. A novel glycoprotein ligand of 240 kDa carrying N-linked glycans was isolated from B-cell membranes by an E-selectin immunoadhesin. Binding of this protein was strictly Ca2+ dependent, was inhibited by a cell adhesion-blocking mAb against E-selectin, and required the presence of sialic acid but not N-linked carbohydrates. Our results enable us to assign to resident memory B lymphocytes a novel adhesion function, the rolling on E-selectin, that provides insights on the adhesion pathways involved in homing of memory B cells to tertiary sites.