Published in

Elsevier, Renewable Energy, (89), p. 552-563, 2016

DOI: 10.1016/j.renene.2015.12.025

Links

Tools

Export citation

Search in Google Scholar

Optimal Design of Fossil-Solar Hybrid Thermal Desalination for Saline Agricultural Drainage Water Reuse

Journal article published in 2016 by Matthew D. Stuber ORCID
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Ultra-high recovery solar thermal desalination of agricultural drainage water is presented as one solution to the historic extreme drought and long-standing salt accumulation problems facing California's fertile Central Valley region. Building on the results obtained from a recent pilot demonstration of a novel solar thermal desalination system, a techno-economic analysis is presented using an existing agricultural region as a case study. Three strategies are considered: continue retiring farmland as crop productivity wanes in future years, desalinate saline drainage water with a novel distillation process using natural gas as the fuel source, and desalinate using natural gas and solar as a hybrid energy source. The study is cast as a parametric optimization problem taking into account natural gas costs and water purchase contract pricing. The results show that with projections of the long-term effects and cost of salt accumulation in the region, solar thermal desalination is economically favorable over both the alternative of doing nothing (retire farmland) as well as implementing conventional (non-renewable) thermal desalination. Most importantly, the results indicate that solar thermal desalination is an economically-viable solution that can increase the sustainability of farming in the region and create a new, sustainable, scalable source of additional freshwater.