Dissemin is shutting down on January 1st, 2025

Published in

Medical Imaging 2007: Physics of Medical Imaging

DOI: 10.1117/12.710523

Links

Tools

Export citation

Search in Google Scholar

Performance evaluation of a direct Computed Radiography system by means of physical characterization and contrast detail analysis

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Red circle
Preprint: archiving forbidden
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

The aim of this study is to determine the performance of a direct CR reader, named "FCR Velocity U Focused Phosphor (FP)". The system is based on a CsBr columnar structured crystal, and the system's read out is based on the "linescan technology" that employs a wide-view CCD. The system's physical performance was tested by means of a quantitative analysis, with calculation of the modulation transfer function (MTF), noise power spectrum (NPS) and detective quantum efficiency (DQE). Image quality was assessed by performing a contrast-detail analysis. The results are compared with those obtained with the well known CR system Fuji FCR XG5000, and the new one Kodak DirectView CR 975. For all the measurements the standard radiation quality RQA-5 was used. The relationship between signal amplitude and entrance air kerma is logarithmic for all the systems and the response functions were used to linearize the images before the MTF (edge method) and NPS calculations. The contrast detail analysis has been achieved by using the well known CDRAD phantom and a customized software designed for automatic computation of the contrast-detail curves. The three systems present similar MTFs, whereas the Fuji Velocity U FP system, thanks to its greater efficiency, has a better behavior in terms of NNPS, especially at low frequencies. That allows the system based on columnar phosphor to provide a better DQE. CDRAD analysis basically confirms that the structured phosphor used in the Velocity system improves the visibility of some details. This is especially true for medium and large details.