Published in

American Chemical Society, Analytical Chemistry, 21(87), p. 10792-10798, 2015

DOI: 10.1021/acs.analchem.5b01596

Links

Tools

Export citation

Search in Google Scholar

Anisotropic Molecular Ionization at 1 V from Tellurium Nanowires (Te NWs)

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Orange circle
Postprint: archiving restricted
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Ionization of molecular species from one-dimensional (1D) tellurium nanowires (Te NWs) has been achieved at 1 V. Molecules with a range of chemical functional groups gave quality mass spectra with high signal/noise ratios and no fragment ions. Experiments suggest the possibility of emission of microdroplets of solution due to the intense fields at the ends or interfaces of nanostructures. It appears that electrolytic conduction of the solution wetting the nanostructures and not the electronic conduction of the nanostructures themselves is involved in the ionization event. Anisotropy was seen when two-dimensionally aligned Te NWs were used for ionization. The orientation effect of aligned Te NWs on molecular ion intensity is demonstrated for many analytes including organic molecules and amino acids with experiments done using a silicon substrate having aligned Te NWs. These measurements suggest the possibility of creating a MS source that extends the applicability of mass spectrometry. Analysis of a variety of analytes, including amino acids, pesticides, and drugs, in pure form and in complex mixtures, is reported. These experiments suggest that 1D nanostructures in general could be excellent ionization sources.