Published in

American Chemical Society, Inorganic Chemistry, 1(54), p. 13-15, 2014

DOI: 10.1021/ic5024136

Links

Tools

Export citation

Search in Google Scholar

Field-Induced Slow Relaxation in a Monometallic Manganese(III) Single-Molecule Magnet

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Orange circle
Postprint: archiving restricted
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

High-field electron paramagnetic resonance spectroscopy shows that the structurally distorted Mn(III) ion in Na5[Mn(l-tart)2]·12H2O (1; l-tart = l-tartrate) has a significant negative axial zero-field splitting and a small rhombic anisotropy (∼1% of D). Alternating-current magnetic susceptibility measurements demonstrate that 1, which contains isolated Mn(III) centers, displays slow relaxation of its magnetization under an applied direct-current magnetic field.