Dissemin is shutting down on January 1st, 2025

Published in

Elsevier, Applied Soft Computing, 1(10), p. 318-331, 2010

DOI: 10.1016/j.asoc.2009.08.002

Links

Tools

Export citation

Search in Google Scholar

Video sequence motion tracking by fuzzification techniques

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

In this paper a method for moving objects segmentation and tracking from the so-called permanency matrix is introduced. Our motion-based algorithms enable to obtain the shapes of moving objects in video sequences starting from those image pixels where a change in their grey levels is detected between two consecutive frames by means of the permanency values. In the segmentation phase matching between objects along the image sequence is performed by using fuzzy bi-dimensional rectangular regions. The tracking phase performs the association between the various fuzzy regions in all the images through time. Finally, the analysis phase describes motion through a long video sequence. Segmentation, tracking an analysis phases are enhanced through the use of fuzzy logic techniques, which enable to work with the uncertainty of the permanency values due to image noise inherent to computer vision.