American Chemical Society, Inorganic Chemistry, 24(53), p. 12929-12938, 2014
DOI: 10.1021/ic501951f
Full text: Download
A novel unsymmetric dinucleating ligand (L(N3N4)) combining a tridentate and a tetradentate binding sites linked through a m-xylyl spacer was synthesized as ligand scaffold for preparing homo- and dimetallic complexes, where the two metal ions are bound in two different coordination environments. Site-selective binding of different metal ions is demonstrated. L(N3N4) is able to discriminate between Cu(I) and a complementary metal (M' = Cu(I), Zn(II), Fe(II), Cu(II), or Ga(III)) so that pure heterodimetallic complexes with a general formula [Cu(I)M'(L(N3N4))](n+) are synthesized. Reaction of the dicopper(I) complex [Cu(I)2(L(N3N4))](2+) with O2 leads to the formation of two different copper-dioxygen (Cu2O2) intermolecular species (O and (T)P) between two copper atoms located in the same site from different complex molecules. Taking advantage of this feature, reaction of the heterodimetallic complexes [CuM'(L(N3N4))](n+) with O2 at low temperature is used as a tool to determine the final position of the Cu(I) center in the system because only one of the two Cu2O2 species is formed.