Dissemin is shutting down on January 1st, 2025

Published in

Optical and Infrared Interferometry II

DOI: 10.1117/12.857393

Links

Tools

Export citation

Search in Google Scholar

Speckle Imaging with the SOAR and the Very Large Telescopes

Journal article published in 2010 by Sridharan Rengaswamy, Julien H. Girard ORCID, Guillaume Montagnier
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Red circle
Preprint: archiving forbidden
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Astronomical speckle imaging is a well established technique for obtaining diffraction limited images of binary and multiple stars, low contrast solar features and nearby extended objects such as comets and solar system planets, with large ground-based telescopes. We have developed a speckle masking code to reconstruct images of such objects from the corresponding specklegrams. This code uses speckle interferometry for estimating the Fourier amplitudes and bispectrum for estimating the Fourier phases. In this paper, we discuss a few technical issues such as: What is the photometric and astrometric accuracy that can be achieved with this code? What is the closest separation between the components of a binary star that can be clearly resolved with sufficient signal to noise ratio with this code? What is the maximum dynamic range? What kind of calibration schemes can be used in the absence of a bright calibrator close to the object of interest? We address these questions based on computer simulations. We present a few sample reconstructions from the real data obtained from the SOAR telescope. We also present the details of a technical feasibility study carried out with NACO-cube mode at the VLT.