Full text: Download
Astronomical speckle imaging is a well established technique for obtaining diffraction limited images of binary and multiple stars, low contrast solar features and nearby extended objects such as comets and solar system planets, with large ground-based telescopes. We have developed a speckle masking code to reconstruct images of such objects from the corresponding specklegrams. This code uses speckle interferometry for estimating the Fourier amplitudes and bispectrum for estimating the Fourier phases. In this paper, we discuss a few technical issues such as: What is the photometric and astrometric accuracy that can be achieved with this code? What is the closest separation between the components of a binary star that can be clearly resolved with sufficient signal to noise ratio with this code? What is the maximum dynamic range? What kind of calibration schemes can be used in the absence of a bright calibrator close to the object of interest? We address these questions based on computer simulations. We present a few sample reconstructions from the real data obtained from the SOAR telescope. We also present the details of a technical feasibility study carried out with NACO-cube mode at the VLT.