Published in

Elsevier, Neuroscience Letters, 1(345), p. 45-48, 2003

DOI: 10.1016/s0304-3940(03)00499-3

Links

Tools

Export citation

Search in Google Scholar

Spinal inhibitory synaptic transmission in the glycine receptor mouse mutant spastic

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Inhibitory glycine receptor (GlyR) and GABA(A) receptor (GABA(A)R)-mediated synaptic transmission was examined in two strains of the GlyR mutant mouse spastic and the respective wild types. The mutants display a mild and a severe neurological phenotype. Electrically evoked postsynaptic whole-cell currents were recorded from alpha-motoneurons in lumbar spinal cord slices. Amplitudes of GlyR-mediated IPSCs were significantly reduced in the severe phenotype in comparison to the respective wild type and the mild phenotype mutants. Surprisingly, amplitudes of GABA(A)R-mediated IPSCs were also significantly reduced in both mutants. Fast time constants of the decay phase of IPSCs were slightly reduced for the GlyR-mediated IPSCs and significantly larger for the GABA(A)R-mediated IPSCs in both mutant strains.