Published in

Elsevier, Geomorphology, 1-2(54), p. 3-9

DOI: 10.1016/s0169-555x(03)00050-3

Links

Tools

Export citation

Search in Google Scholar

Major risk from rapid, large-volume landslides in Europe (EU Project RUNOUT)

Journal article published in 2003 by Christopher R. J. Kilburn, Alessandro Pasuto ORCID
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Project RUNOUT has investigated methods for reducing the risk from large-volume landslides in Europe, especially those involving rapid rates of emplacement. Using field data from five test sites (Bad Goisern and Köfels in Austria, Tessina and Vajont in Italy, and the Barranco de Tirajana in Gran Canaria, Spain), the studies have developed (1) techniques for applying geomorphological investigations and optical remote sensing to map landslides and their evolution; (2) analytical, numerical, and cellular automata models for the emplacement of sturzstroms and debris flows; (3) a brittle-failure model for forecasting catastrophic slope failure; (4) new strategies for integrating large-area Global Positioning System (GPS) arrays with local geodetic monitoring networks; (5) methods for raising public awareness of landslide hazards; and (6) Geographic Information System (GIS)-based databases for the test areas. The results highlight the importance of multidisciplinary studies of landslide hazards, combining subjects as diverse as geology and geomorphology, remote sensing, geodesy, fluid dynamics, and social profiling. They have also identified key goals for an improved understanding of the physical processes that govern landslide collapse and runout, as well as for designing strategies for raising public awareness of landslide hazards and for implementing appropriate land management policies for reducing landslide risk.