Published in

American Chemical Society, Chemistry of Materials, 11(26), p. 3357-3360, 2014

DOI: 10.1021/cm501265j

Links

Tools

Export citation

Search in Google Scholar

Tethered Pyro-Electrohydrodynamic Spinning for Patterning Well-Ordered Structures at Micro- and Nanoscale

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Orange circle
Postprint: archiving restricted
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

A study was conducted to demonstrate tethered pyro-electrohydrodynamic spinning (TPES) for patterning well-ordered structures at micro- and nanoscale. The TPES was introduced in wireless modality without electric circuit, electrodes, and voltage supply. This novel approach definitively simplified the electrospinning (ES) apparatus extending the nanofiber spinning to active organic polymers preserving at the same time all the properties of conventional systems. Fiber drawing from the liquid polymer was driven through the pyroelectric charge generated into a ferroelectric crystal able to induce the electrohydrodynamics (EHD) pressure required for polymer manipulation without wires. The approach was highly flexible, simple, compact, and cost-effective when compared with classical ES and allowed working safely, avoiding the use of high-voltage equipment at kVolts scale.