Published in

Elsevier, Composites Part B: Engineering, 8(31), p. 681-691

DOI: 10.1016/s1359-8368(00)00028-7

Links

Tools

Export citation

Search in Google Scholar

Impact damage characterisation of carbon fibre/epoxy composites with multi-layer reinforcement

Journal article published in 2000 by M. S. Sohn, X. Z. Hu, J. K. Kim ORCID, L. Walker
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Low-velocity impact tests were performed to investigate the impact behaviour of carbon fibre/epoxy composite laminates reinforced by short fibres and other interleaving materials. Characterisation techniques, such as cross-sectional fractography and scanning acoustic microscopy, were employed quantitatively to assess the internal damage of some composite laminates at the sub-surface under impact. Scanning electron microscopy was used to observe impact fractures and damage modes at the fracture surfaces of the laminate specimens. The results show that composite laminates experience various types of fracture; delamination, intra-ply cracking, matrix cracking, fibre breakage and damage depending on the interlayer materials. The trade-off between impact resistance and residual strength is minimised for composites reinforced by Zylon fibres, while that for composites interleaved by poly(ethylene-co-acrylic acid) (PEEA) film is substantial because of deteriorating residual strength, even though the damaged area is significantly reduced. Damages produced on the front and back surfaces of impact were also observed and compared for some laminates.