Published in

Elsevier, Journal of Chromatography A, 1-2(942), p. 73-82

DOI: 10.1016/s0021-9673(01)01358-9

Links

Tools

Export citation

Search in Google Scholar

Ionic strength, pH and temperature effects upon selectivity for transition and heavy metal ions when using chelation ion chromatography with an iminodiacetic acid bonded silica gel column and simple inorganic eluents

Journal article published in 2002 by Wasim Bashir, Brett Paull ORCID
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

An investigation into the selectivity of an iminodiacetic acid (IDA) modified silica gel column for transition and heavy metal ions using non-chelating inorganic eluents has been carried out. A number of eluent parameters were investigated to determine the exact retention mechanism taking place and to control selectivity. The parameters studied were eluent ionic strength and the nature of the inorganic salt used, eluent pH and eluent temperature. The results obtained showed how despite certain metal ions exhibiting similar stability constants with the bonded IDA groups, careful control of each of the above parameters, in particular eluent chloride ion concentration and eluent temperature, could result in large changes in selectivity. Optimal conditions for the isocratic and gradient separation of Mg(II), Ca(II), Mn(II), Cd(II), Co(II), Zn(II) and Pb(II) were determined. An isocratic method using a 0.035 M KCl, 0.065 M KNO3 (pH 2.5) eluent was successfully applied to the determination of Mn(II), Cd(II), Co(II) and Zn(II) at concentrations between 20 and 121 microg/l in a freshwater certified reference material (NIST 1640).