Published in

Elsevier, Advances in Space Research, 8(32), p. 1459-1465

DOI: 10.1016/s0273-1177(03)90381-4

Links

Tools

Export citation

Search in Google Scholar

The teleost fish medaka (Oryzias Latipes) as genetic model to study gravity dependent bone homeostasis in vivo

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Long-term space flight and microgravity result in bone loss that can be explained by reduced activity of bone-forming cells (osteoblasts) and/or an increase in activity of bone resorbing cells (osteoclasts). Osteoprotegerin (OPG) has been shown to regulate the balance between osteoblast and osteoclast cell numbers and is involved in maintaining constant bone mass under normal gravitational conditions. The small bony fish medaka (Oryzias latipes) has attracted increasing attention as a genetic model system to study normal embryonic developmental and pathological processes. To analyze the molecular mechanisms of bone formation in this small vertebrate, we have isolated two opg genes, opgl and opg2, from medaka. Our phylogenetic analysis reveals that both genes originated from a common ancestor by fish-specific gene duplication and represent the orthologs of the mammalian opg gene. Both opg genes are differentially expressed during embryonic and larval development, in adult tissues and in cultured primary osteoblast-like cells. Furthermore, we have characterized the opg2 promoter region and identified consensus binding sites for the transcription factor core-binding-factor-1A (CBFA1). In mammals, CBFA1 has been shown to be a regulator of opg expression and to be essential for several steps during osteoblast differentiation. Here we show that sequence and expression domains of opg, cbfal and a member of the dlx gene family are highly conserved between medaka and higher vertebrates. This suggests that not only single genes but entire genetic networks for bone formation are conserved between teleosts and mammals. These findings will open medaka fish as a genetic model to monitor bone formation under different gravity conditions in a living whole animal allowing the identification of novel factors involved in bone homeostasis.