Published in

Wiley, Hepatology, 4(56), p. 1457-1467, 2012

DOI: 10.1002/hep.25713

Links

Tools

Export citation

Search in Google Scholar

Structural analysis of oval-cell-mediated liver regeneration in rats

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

We have analyzed the architectural aspects of progenitor-cell-driven regenerative growth in rat liver by applying the 2-acetaminofluorene/partial hepatectomy experimental model. The regeneration is initiated by the proliferation of so-called oval cells. The oval cells at the proximal tips of the ductules have a more differentiated phenotype and higher proliferative rate. This preferential growth results in the formation of a seemingly random collection of small hepatocytes, called foci. These foci have no clonal origin, but possess a highly organized structure, which shows similarities to normal hepatic parenchyma. Therefore, they can easily remodel into the lobular structure. Eventually, the regenerated liver is constructed by enlarged hepatic lobules; no new lobules are formed during this process. The foci of the Solt-Farber experimental hepatocarcinogenesis model have identical morphological features; accordingly, they also represent only regenerative, not neoplastic, growth. Conclusion: Progenitor-cell-driven liver regeneration is a well-designed, highly organized tissue reaction, and better comprehension of the architectural events may help us to recognize this process and understand its role in physiological and pathological reactions. (HEPATOLOGY 2012).