Published in

Elsevier, Field Crops Research, (177), p. 125-136, 2015

DOI: 10.1016/j.fcr.2015.03.012

Links

Tools

Export citation

Search in Google Scholar

Generalization of the root length density distribution of cotton under film mulched drip irrigation

Journal article published in 2015 by Songrui Ning, Jianchu Shi, Qiang Zuo, Shu Wang, Alon Ben-Gal ORCID
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Root length density (RLD) distribution information is essential to crop growth and soil water/solute transport predictions and for rational irrigation scheduling and crop management. Unfortunately, measuring RLD accurately in the field is difficult and time-consuming, especially for row crops such as cotton. Field experiments were conducted over two seasons (Exp. 1 and 2 in 2011 and 2012, respectively) to investigate two-dimensional RLD distribution of cotton under film mulched drip irrigation in Xinjiang, China. Different RLD distributions were created by varying row and drip line spacing, irrigation water salinity, irrigation volume and fertilizer application rate. Both distributions of measured RLD and calculated normalized RLD (NRLD), the root length allocation proportions of a plant at different relative depths, were found to decrease with depth, concentrating within the upper soil layers with nearly negligible differences along the horizontal direction. NRLD values in Exp. 2 were pooled together and simply generalized as a vertical one-dimensional decreasing function with just one fitted coefficient of a = 2.06, which was employed to characterize the maximum value of NRLD at the soil surface and its downward decreasing rate. The generalized function was verified to be in good agreement with the measured NRLD distributions of cotton in Exp. 1, and then further improved using all the NRLD data from Exp. 1 and 2. The improved function (with a = 1.96) was shown useful in estimating RLD distribution and simulating soil water flow and salinity transport in a soil–cotton system.