Published in

American Chemical Society, Journal of Physical Chemistry B (Soft Condensed Matter and Biophysical Chemistry), 28(118), p. 7954-7962, 2014

DOI: 10.1021/jp500845f

Links

Tools

Export citation

Search in Google Scholar

Response of Villin Headpiece-Capped Gold Nanoparticles to Ultrafast Laser Heating

Journal article published in 2014 by Shabir Hassan ORCID, Marco Schade, Christopher P. Shaw, Raphael Levy ORCID, Peter Hamm
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Orange circle
Postprint: archiving restricted
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The integrity of a small model protein, the 36-residue villin headpiece HP36 attached to gold nanoparticles (AuNP) is examined and its response to laser excitation of the AuNPs is investigated. To that end, it is first verified by stationary IR and CD spectroscopy together with denaturation experiments that the folded structure of the protein is fully preserved when attached to the AuNP surface. It is then shown by time-resolved IR spectroscopy that the protein does not unfold even upon the highest pump fluences that lead to local temperature jumps in the order of 1000 K of the phonon system of the AuNPs, since that temperature jump persists for too short a time of a few nanoseconds only to be destructive. Judged from a blue shift of the amide I band, indicating destabilized or a few broken hydrogen bonds, the protein either swells, becomes more unstructured from the termini, and/or changes its degree of solvation. In any case, it recovers immediately after the excess energy dissipates into the bulk solvent. The process is entirely reversible for millions of laser shots without any indication of aggregation of the protein and/or the AuNPs and with only a minor fraction of broken protein-AuNP thiol-bonds. The work provides important cornerstones in designing laser pulse parameters for maximal heating with protein-capped AuNPs without destroying the capping layer.