Published in

Springer, Mycorrhiza, 1(25), p. 25-40, 2014

DOI: 10.1007/s00572-014-0586-3

Links

Tools

Export citation

Search in Google Scholar

Is the prominent ericoid mycorrhizal fungus Rhizoscyphus ericae absent in the Southern Hemisphere’s Ericaceae? A case study on the diversity of root mycobionts in Gaultheria spp. from northwest Patagonia, Argentina

Journal article published in 2014 by M. Clara Bruzone, Sonia B. Fontenla, Martin Vohník ORCID
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Ericaceae diversity hotspots are in the mountains of the Neotropics and Papua New Guinea, South Africa's fynbos and Southeast Asia but majority of references to their root mycobionts come from the Northern Hemisphere. Here, typical cultivable ericoid mycorrhizal (ErM) fungi comprise Rhizoscyphus ericae, Meliniomyces variabilis, and Oidiodendron maius. It is however unclear whether this is true also for the Southern Hemisphere. Our study focused on cultivable mycobionts from hair roots of Gaultheria mucronata and Gaultheria poeppigii (Ericaceae) from two natural forests in NW Patagonia, Argentina, differing in mycorrhizal preferences of their tree dominants. We detected 62 well-defined OTUs mostly belonging to Helotiales and Hypocreales; the most frequent were Phialocephala fortinii s. l., Pochonia suchlasporia, and Ilyonectria radicicola. Only one out of 257 isolates showed ITS nrDNA similarity to members of the R. ericae aggregate (REA) but was not conspecific with R. ericae, and only five isolates were conspecific with O. maius. Microscopic observations showed that the screened roots were frequently colonized in a manner differing from the pattern typically produced by R. ericae and O. maius. A re-synthesis experiment with selected isolates showed that only O. maius formed colonization resembling ericoid mycorrhiza. Amplification of root fungal DNA with REA-specific and Sebacinaceae-specific primers showed that REA mycobionts were present in some of the screened samples while Sebacinaceae were present in all samples. These results suggest that Gaultheria spp. from NW Patagonia form ericoid mycorrhizae predominantly with the difficult-to-cultivate Sebacinaceae while the incidence of REA is relatively low and may be masked by other most likely non-mycorrhizal cultivable mycobionts.