Published in

American Institute of Physics, Applied Physics Letters, 17(104), p. 173301

DOI: 10.1063/1.4874263

Links

Tools

Export citation

Search in Google Scholar

Overcoming tradeoff between mobility and bias stability in organic field-effect transistors according to the self-assembled monolayer chain lengths

Journal article published in 2014 by Jeongkyun Roh, Chan-Mo Kang, Jeonghun Kwak ORCID, Changhee Lee ORCID, Byung Jun Jung
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

This study examined the relationship between the mobility and bias stability of pentacene-based organic field-effect transistors (OFETs) regarding a self-assembled monolayer (SAM) treatment. For this systematic study, four types of silazane-based SAMs with different alkyl chain lengths in the range of 1–8 were used. Silazane-based SAMs have an advantage of processability due to the mild reaction conditions. The mobility was increased from 0.29 without SAM to 0.46, 0.61, 0.65, and 0.84 cm2/V s after the SAM-treatment with an alkyl chain length of 1, 3, 4, and 8, respectively. On the other hand, inverse proportional relationship was observed between the bias stability and SAM alkyl chain length. Under high gate bias stress (equivalent to electric field of 3 MV/cm) for 2 h, the threshold voltage shift of the OFET was decreased from 12.19 V without SAM to 5.69 V with a short SAM-treatment (alkyl chain length of 1) and 7.14 V with a long SAM-treatment (alkyl chain length of 8). This is the significant finding that there was a tradeoff relationship between the mobility and bias stability of OFETs concerning the SAM alkyl chain length. To overcome this tradeoff, a method for surface engineering using two-step SAM-treatment was introduced. By treating long SAM and short SAM in sequence, both the high mobility and good bias stability were achieved. With two-step SAM-treatment, the OFET showed high mobility as a long SAM-treated OFET and good bias stability as a short SAM-treated OFET.