Dissemin is shutting down on January 1st, 2025

Published in

Society for Neuroscience, Journal of Neuroscience, 7(29), p. 1948-1961, 2009

DOI: 10.1523/jneurosci.4830-08.2009

Links

Tools

Export citation

Search in Google Scholar

TheDrosophilaFragile X Mental Retardation Gene Regulates Sleep Need

Journal article published in 2009 by Daniel Bushey, Giulio Tononi, Chiara Cirelli ORCID
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

Sleep need is affected by developmental stage and neuronal plasticity, but the underlying mechanisms remain unclear. The Fragile X mental retardation gene Fmr1, whose loss-of-function mutation causes the most common form of inherited mental retardation in humans, is involved in synaptogenesis and synaptic plasticity, and its expression depends on both developmental stage and waking experience. Fmr1 is highly conserved across species and Drosophila mutants carrying dFmr1 loss-of-function or gain-of-function mutations are well characterized: amorphs have overgrown dendritic trees with larger synaptic boutons, developmental defects in pruning, and enhanced neurotransmission, while hypermorphs show opposite defects, including dendritic and axonal underbranching and loss of synapse differentiation. We find here that dFmr1 amorphs are long sleepers and hypermorphs are short sleepers, while both show increased locomotor activity and shortened life-span. Both amorphs and hypermorphs also show abnormal sleep homeostasis, with impaired waking performance and no sleep rebound after sleep deprivation. An impairment in the circadian regulation of sleep cannot account for the altered sleep phenotype of dFmr1 mutants, nor can an abnormal activation of glutamatergic metabotropic receptors. Moreover, overexpression of dFmr1 throughout the mushroom bodies is sufficient to reduce sleep. Finally, dFmr1 protein levels are modulated by both developmental stage and behavioral state, with increased expression immediately after eclosure and after prolonged wakefulness. Thus, dFmr1 expression dose-dependently affects both sleep and synapses, suggesting that changes in sleep time in dFmr1 mutants may derive from changes in synaptic physiology.