Published in

American Chemical Society, ACS Applied Materials and Interfaces, 44(7), p. 24608-24615, 2015

DOI: 10.1021/acsami.5b06578

Links

Tools

Export citation

Search in Google Scholar

High Performance Inverted Organic Photovoltaics Without Hole Selective Contact

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Orange circle
Postprint: archiving restricted
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

A detailed investigation of the functionality of inverted organic photovoltaics (OPVs) using bare Ag contacts as top electrode is presented. The inverted OPVs without hole transporting layer (HTL) exhibit a significant gain in hole carrier selectivity and power conversion efficiency (PCE) after exposure in ambient conditions. Inverted OPVs comprised of ITO/ZnO/poly(3-hexylthiophene-2,5-diyl):phenyl-C61-butyric acid methyl ester (P3HT:PCBM)/Ag demonstrate over 3.5% power conversion efficiency only if the devices are exposed in air for over 4 days. As concluded through a series of measurements, the oxygen presence is essential to obtain fully operational solar cell devices without HTL. Moreover, accelerated stability tests under dump heat conditions (RH=85% and T=65oC) performed to non-encapsulated OPVs demonstrate that HTL-free inverted OPVs exhibit comparable stability to the reference inverted OPVs. Importantly, it is shown that bare Ag top electrodes can be efficiently used in inverted OPVs using various high performance polymer:fullerene bulk heterojunction material systems demonstrating 6.5% power conversion efficiencies.