Published in

Springer Verlag, Nano Research, 2(9), p. 380-391

DOI: 10.1007/s12274-015-0918-4

Links

Tools

Export citation

Search in Google Scholar

A progressive route for tailoring electrical transport in MoS2

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Typically, molybdenum disulfide (MoS2) synthesized by chemical vapor deposition (CVD) is polycrystalline; as a result, the scattering of charge carriers at grain boundaries can lead to performances lower than those observed in exfoliated single-crystal MoS2. Until now, the electrical properties of grain boundaries have been indirectly studied without accurate knowledge of their location. Here, we present a technique to measure the electrical behavior of individual grain boundaries in CVD-grown MoS2, imaged with the help of aligned liquid crystals. Unexpectedly, the electrical conductance decreased by three orders of magnitude for the grain boundaries with the lowest on/off ratio. Our study provides a useful technique to fabricate devices on a single-crystal area, using optimized growth conditions and device geometry. The photoresponse, studied within a MoS2 single grain, showed that the device responsivity was comparable with that of the exfoliated MoS2-based photodetectors.[Figure not available: see fulltext.] © 2015 Tsinghua University Press and Springer-Verlag Berlin Heidelberg