Published in

Stockholm University Press, Tellus B: Chemical and Physical Meteorology, 2(60), 2008

DOI: 10.3402/tellusb.v60i2.16917

Stockholm University Press, Tellus B: Chemical and Physical Meteorology, 2(60), p. 226, 2008

DOI: 10.1111/j.1600-0889.2007.00331.x

Links

Tools

Export citation

Search in Google Scholar

Non‐methane volatile organic compound flux from a subarctic mire in Northern Sweden

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Biogenic NMVOCs are mainly formed by plants and microorganisms. They have strong impact on the local atmospheric chemistry when emitted to the atmosphere. The objective of this study was to determine if there are significant emissions of non-methane volatile organic compounds (NMVOCs) from a subarctic mire in northern Sweden. Subarctic peatlands in discontinuous permafrost regions are undergoing substantial environmental changes due to their high sensitivity to climate warming and there is need for including NMVOCs in the overall carbon budget. Automatic and manual chamber measurements were used to estimate NMVOC fluxes from three dominating subhabitats on the mire during three growing seasons. Emission rates varied and were related to plant species distribution and seasonal net ecosystem exchange of carbon dioxide. The highest fluxes were observed from wetter sites dominated by Eriophorum and Sphagnum spp. Total NMVOC emissions from the mire (∼17 ha) is estimated to consist of ∼150 kgC during a growing season with 150 d. NMVOC fluxes can account for ∼5% of total net carbon exchange (−3177 kgC) at the mire during the same period. NMVOC emissions are therefore a significant component in a local carbon budget for peatlands.