Published in

Elsevier, Carbon, (66), p. 302-311

DOI: 10.1016/j.carbon.2013.09.004

Links

Tools

Export citation

Search in Google Scholar

The evolution of surface charge on graphene oxide during the reduction and its application in electroanalysis

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

A series of reduced graphene oxide (RGO) colloids with different amounts of surface charges was prepared. The change in surface charge at different pH values was detected by zeta potential measurement, and the evolution of oxygen-containing functional groups attached to the RGOs was analysed by Fourier-transform infrared spectroscopy and ultraviolet-visible absorption spectroscopy. Results showed that the edge phenolic hydroxyl and carboxyl groups made more contributions to the negative surface charge compared with the basal-plane hydroxyl and epoxy groups. Electrical impedance spectroscopy results proved that the surface charge of RGOs significantly affected their electrochemical properties. Furthermore, GO and RGOs (graphene oxide materials) were also used to construct electrochemical sensors for quantitive measurement of Cu2+ by differential pulse anodic stripping voltammetry. The results revealed that the increase in negative surface charge on RGO enhanced its electrocatalytic activity for Cu2+ reduction. Thus, considering that studies on the properties of graphene oxide materials can be simplified by the surface charge, its analysis is an important means of material characterisation.