Published in

Elsevier, Journal of Experimental Marine Biology and Ecology, 1(332), p. 27-36, 2006

DOI: 10.1016/j.jembe.2005.11.002

Links

Tools

Export citation

Search in Google Scholar

Chemical and physical defenses against predators in Cystodytes (Ascidiacea)

Journal article published in 2006 by Susanna López-Legentil, Xavier Turon ORCID, Peter Schupp
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Ascidians utilize both physical (spicules, tunic toughness) and chemical defenses (secondary metabolites, acidity) and suffer relatively little predation by generalist predators. The genus Cystodytes (Polycitoridae) is distributed widely in both tropical and temperate waters. Secondary metabolite composition, calcareous spicules and tunic acidity (pH < 1) may act as redundant defense mechanisms against predation in this genus. To assess the relative importance of chemical and physical defenses against predation in ascidians, we studied purple and blue morphs of Cystodytes from the western Mediterranean (formerly assigned to Cystodytes dellechiajei, but recently shown to belong to two different species), and a purple morph from Guam (USA), identified as Cystodytes violatinctus. Crude extracts, spicules, ascididemin (the major alkaloid of the blue morph) and acidity were used in feeding trials to evaluate chemical and physical defense mechanisms in Cystodytes spp. We performed feeding experiments in the field with a guild of generalist fish (mostly damselfish), and in the laboratory with a sea urchin and a puffer fish. Our results showed that all crude extracts and ascididemin significantly deterred fish predation, but not sea urchin predation. However, neither acidity alone nor spicules at natural concentrations deterred feeding. These results and other studies on sponges and gorgonians suggest that secondary metabolites are the primary means of defense against fish predators. Spicules and tunic acidity may perform other ecological roles and/or target certain specialist predators.