Published in

Wiley, Molecular Microbiology, 5(92), p. 910-920, 2014

DOI: 10.1111/mmi.12600

Links

Tools

Export citation

Search in Google Scholar

The HrcA repressor is the thermosensor of the heat-shock regulatory circuit in the human pathogen Helicobacter pylori

Journal article published in 2014 by Davide Roncarati, Alberto Danielli ORCID, Vincenzo Scarlato
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Bacteria exploit different strategies to perceive and rapidly respond to sudden changes of temperature. In Helicobacter pylori the response to thermic stress is transcriptionally controlled by a regulatory circuit that involves two repressors, HspR and HrcA. Here we report that HrcA acts as a protein thermometer. We demonstrate that temperature specifically modulates HrcA binding to DNA, with a complete and irreversible temperature-dependent loss of DNA binding activity at 42°C. Intriguingly, although the reduction of HrcA binding capability is not reversible in vitro, transcriptional analysis showed that HrcA exerts its repressive influence in vivo, even when the de novo repressor synthesis is blocked after the temperature challenge. Accordingly, we demonstrate the central role of the chaperonine GroESL in restoring the HrcA binding activity, lost upon heat challenge. Together our results establish HrcA as a rare example of intrinsic temperature sensing transcriptional regulator, whose activity is posttranscriptionally modulated by the GroESL chaperonine.