Published in

Oxford University Press, Human Molecular Genetics, 7(23), p. 1829-1841, 2013

DOI: 10.1093/hmg/ddt576

Links

Tools

Export citation

Search in Google Scholar

Apoptotic cell death and altered calcium homeostasis caused by frataxin depletion in dorsal root ganglia neurons can be prevented by BH4 domain of Bcl-xL protein

Journal article published in 2013 by Stefka Mincheva-Tasheva, Elia Obis ORCID, Jordi Tamarit, Joaquim Ros
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Abstract Friedreich ataxia (FRDA) is a neurodegenerative disease characterized by a decreased expression of the mitochondrial protein frataxin. Major neurological symptoms of the disease are due to degeneration of dorsal root ganglion (DRG) sensory neurons. In this study we have explored the neurodegenerative events occurring by frataxin depletion on primary cultures of neurons obtained from rat DRGs. Reduction of 80% of frataxin levels in these cells was achieved by transduction with lentivirus containing shRNA silencing sequences. Frataxin depletion caused mitochondrial membrane potential decrease, neurite degeneration and apoptotic cell death. A marked increase of free intracellular Ca2+ levels and alteration in Ca2+-mediated signaling pathways was also observed, thus suggesting that altered calcium homeostasis can play a pivotal role in neurodegeneration caused by frataxin deficiency. These deleterious effects were reverted by the addition of a cell-penetrant TAT peptide coupled to the BH4, the anti-apoptotic domain of Bcl-xL. Treatment of cultured frataxin-depleted neurons with TAT-BH4 was able to restore the free intracellular Ca2+ levels and protect the neurons from degeneration. These observations open the possibility of new therapies of FRDA based on modulating the Ca2+ signaling and prevent apoptotic process to protect DRG neurons from neurodegeneration.