Dissemin is shutting down on January 1st, 2025

Published in

Elsevier, International Journal of Hydrogen Energy, 35(39), p. 20207-20215

DOI: 10.1016/j.ijhydene.2014.09.127

Links

Tools

Export citation

Search in Google Scholar

Parametric study of a laser ignited hydrogen–air mixture in a constant volume combustion chamber

Journal article published in 2014 by Kewal Dharamshi, Avinash Kumar Agarwal ORCID
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Experiments were carried out in a constant volume combustion chamber (CVCC) to investigate flame kernel development and flame speed of hydrogen–air mixtures having different fuel–air ratios. A Q-switched Nd: YAG laser with 1064 nm wavelength and pulse duration of 6–9 ns was used for ignition by generating laser induced plasma inside the CVCC. In this study, laser induced ignition of hydrogen–air mixtures was investigated using different initial chamber filling pressures (P = 2.5 bar–10 bar) at different initial temperatures (373 K–523 K). A variable optical setup with converging lenses having different focal lengths (f = 100–250 mm) were used to position the plasma at various locations inside the CVCC. A high speed camera recorded the flame kernel development and a piezoelectric pressure transducer recorded the pressure–time history for all the experiments. The main objective of this study was to determine the dependence of combustion properties of laser ignited hydrogen–air mixtures on lasers, optical configurations and initial conditions prevailing in the CVCC.