Published in

Elsevier, Water Research, 5(41), p. 1103-1109, 2007

DOI: 10.1016/j.watres.2006.12.013

Links

Tools

Export citation

Search in Google Scholar

Degradation of a Textile Reactive Azo Dye by a Combined Chemical–Biological Process: Fenton's Reagent – Yeast

Journal article published in 2007 by Marco S. Lucas ORCID, Albino A. Dias, Ana Sampaio, Carla Amaral, José A. Peres
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

This work presents the results of our studies on the decolorization of aqueous azo dye Reactive black 5 (RB5) solution combining an advanced oxidation process (Fenton's reagent) followed by an aerobic biological process (mediated by the yeast Candida oleophila). Under our conditions, initial experiments showed that Fenton's process alone, as well as aerobic treatment by C. oleophila alone, exhibited the capacity to significantly decolorize azo dye solutions up to 200 mg/L, within about 1 and 24h, respectively. By contrast, neither Fenton's reagent nor C. oleophila sole treatments showed acceptable decolorizing abilities for higher initial dye concentrations (300 and 500 mg/L). However, it was verified that Fenton's reagent process lowered these higher azo dye concentrations to a value less than 230 mg/L, which is apparently compatible with the yeast action. Therefore, to decolorize higher concentrations of RB5 and to reduce process costs the combination between the two processes was evaluated. The final decolorization obtained with Fenton's reagent process as primary treatment, at 1.0 x 10(-3)mol/L H(2)O(2) and 1.0 x 10(-4)mol/L Fe(2+), and growing yeast cells as a secondary treatment, achieves a color removal of about 91% for an initial RB5 concentration of 500 mg/L.