American Institute of Physics, The Journal of Chemical Physics, 18(126), p. 184303
DOI: 10.1063/1.2732751
Full text: Download
The authors present quantum scattering calculations of rate coefficients for the spin-orbit relaxation of F(2P1/2) atoms in a gas of H2 molecules and Cl(2P1/2) atoms in a gas of H2 and D2 molecules. Their calculation of the thermally averaged rate coefficient for the electronic relaxation of chlorine in H2 agrees very well with an experimental measurement at room temperature. It is found that the spin-orbit relaxation of chlorine atoms in collisions with hydrogen molecules in the rotationally excited state j=2 is dominated by the near-resonant electronic-to-rotational energy transfer accompanied by rotational excitation of the molecules. The rate of the spin-orbit relaxation in collisions with D2 molecules increases to a great extent with the rotational excitation of the molecules. They have found that the H2/D2 isotope effect in the relaxation of Cl(2P1/2) is very sensitive to temperature due to the significant role of molecular rotations in the nonadiabatic transitions. Their calculation yields a rate ratio of 10 for the electronic relaxation in H2 and D2 at room temperature, in qualitative agreement with the experimental measurement of the isotope ratio of about 5. The isotope effect becomes less significant at higher temperatures.