Published in

Wiley, Polymer Composites, 8(35), p. 1621-1628, 2013

DOI: 10.1002/pc.22815

Links

Tools

Export citation

Search in Google Scholar

Up-Cycling End-of-Use Materials: Highly Filled Thermoplastic Composites Obtained by Loading Waste Carbon Fiber Composite into Fluidified Recycled Polystyrene

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Carbon fibers reinforced epoxy resins are used in a wide range of applications, such as automotive and aerospace industry. Because of their thermosetting nature, recycling at the end of the life cycle is a difficult issue. However, lack of recyclability poses environmental concerns to the use of these composite materials. In this article, a sustainable, cost-effective technological approach aiming at recycling postconsumer carbon fibers reinforced thermosets (CFRT) is proposed. Composites containing 50 and 70 wt% of CFRT particles were prepared by incorporating the filler fraction into a fluidified postconsumer expanded polystyrene matrix. A cold mixing approach consisting in the use of a low boiling solvent as a binder to guarantee the dispersion homogeneity on micro- and macroscopic level was set up. For comparison, analog composites were also prepared through melt mixing process. Morphological, mechanical, and thermal analyses allowed to prove the effectiveness of the cold mixing approach and to evaluate the influence of particle size on the performance of new recycled composites. Thermogravimetric analysis and thermal conductivity tests of samples highlighted further peculiarities of the cold mixing process. The approach proposed is an effective recycling technology for CFRT and could be extended to other postconsumer materials. POLYM. COMPOS., 2013. © 2013 Society of Plastics Engineers