Dissemin is shutting down on January 1st, 2025

Published in

Elsevier, Gondwana Research, 4(9), p. 456-463, 2006

DOI: 10.1016/j.gr.2005.12.001

Links

Tools

Export citation

Search in Google Scholar

Shrimp U–Pb zircon dating and palynology of bentonitic layers from the Permian Irati Formation, Paraná Basin, Brazil

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

This paper presents the first SHRIMP zircon age data from bentonitic ash fall layers intercalated with the Irati sedimentary rocks, as well as palynofossils retrieved from the PETROBRAS-Six mine, Paraná State, southern Brazil. The Permian Irati Formation is one the most important oil source horizons within the Paraná Basin, and consists mainly of siltstones, gray claystones, as well as organic-rich claystones intercalated with limestones. Zircon morphology based on cathodoluminescence images includes two different populations: a dominant population of euhedral, prismatic, elongate to acicular grains which are most likely related to an ash fall volcanism; and a population of rounded to large prismatic grains, that were interpreted as detrital grains. SHRIMP analysis performed on the euhedral and prismatic grains revealed an age of ca. 278.4 ± 2.2 Ma (7 points with 95% confidence) interpreted as the crystallization age of the volcanic eruption. Based on this new dating, the Irati Formation should be placed on the Lower Permian (Cisuralian), Artinskian in age, modifying substantially the traditional ages previously attributed to this unit. The palynofossils from this level include key species of the Lueckisporites virkkiae Zone (such as L. virkkiae, L. densicorpus, L. stenotaeniatus, Weylandites lucifer, Alisporites splendens). Typical species of this zone also occur in African and other South American (Argentina) Permian strata, allowing stratigraphical correlations. The origin of the ash falls is not clearly defined. It may be related either to calc-alkaline arc magmatism associated to the Sanrafaelica Orogeny (275 and 250Ma) or to bimodal volcanic events associated to an early intracontinental rift developed within southwestern Gondwana at ca. 278My. The dating of this unit is significative to calibrate biostratigraphic schemes along the Paraná Basin, as well as equivalent zones in Gondwana areas, mainly in its Occidental portion.