Published in

Elsevier, Developmental Biology, 2(315), p. 418-425, 2008

DOI: 10.1016/j.ydbio.2007.12.044

Links

Tools

Export citation

Search in Google Scholar

The expression of the Alzheimer's amyloid precursor protein-like gene is regulated by developmental timing microRNAs and their targets in Caenorhabditis elegans

Journal article published in 2008 by Ryusuke Niwa, Feng Zhou, Chris Li, Frank J. Slack ORCID
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Alzheimer's disease (AD) is a neurodegenerative disorder characterized by the accumulation of dense plaques in the brain, resulting in progressive dementia. A major plaque component is the beta-amyloid peptide, which is a cleavage product of the amyloid precursor protein (APP). Studies of dominant inheritable familial AD support the hypothesis that APP is critical for AD development. On the other hand, the pathogenesis of amyloid plaque deposition in AD is thought to be the result of age-related changes with unknown mechanisms. Here we show that the Caenorhabditis elegans homolog of APP, APP-like-1 (apl-1), functions with and is under the control of molecules regulating developmental progression. In C. elegans, the timing of cell fate determination is controlled by the heterochronic genes, including let-7 microRNAs. C. elegans apl-1 shows significant genetic interactions with let-7 family microRNAs and let-7-targeted heterochronic genes, hbl-1, lin-41 and lin-42. apl-1 expression is upregulated during the last larval stage in hypodermal seam cells which is transcriptionally regulated by hbl-1, lin-41 and lin-42. Moreover, the levels of the apl-1 transcription are modulated by the activity of let-7 family microRNAs. Our work places apl-1 in a developmental timing pathway and may provide new insights into the time-dependent progression of AD.