Published in

Springer, Journal of Intelligent and Robotic Systems, 3-4(62), p. 451-466, 2010

DOI: 10.1007/s10846-010-9450-7

Links

Tools

Export citation

Search in Google Scholar

Smart Suspension System for Linear Guideways

Journal article published in 2010 by Dominik Pisarski, Czesław I. Bajer ORCID
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

This paper presents a new method for the semi-active control of the span system of linear guideways subjected to a travelling load. Two elastic beams are coupled by a set of controlled dampers. The relative velocity of the spans provides an opportunity for efficient control via semi-active suspension. The magnitude of the moving force is assumed to be constant by neglecting inertial forces. The response of the system is solved in modal space. The full analytical solution is based on the power series method and can be given over an arbitrary time interval. The control strategy is formulated by using bilinear optimal control theory. As a result, bang-bang controls are taken into account. The final solution is obtained as a numerical mean value. Several examples demonstrate the efficiency of the proposed method. The controlled system outperforms passive solutions over a wide range. Due to the simplicity of its design, the presented solution should be interesting to engineers.