Published in

Humana Press, Methods in Molecular Biology, p. 581-593, 2011

DOI: 10.1007/978-1-61779-433-9_31

Links

Tools

Export citation

Search in Google Scholar

The Use of Bacterial Artificial Chromosomes for Recombinant Protein Production in Mammalian Cell Lines

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The choice of an expression vector is a critical step in the field of recombinant protein production in mammalian cells lines. Most expression vectors used in the field are sensitive to the surrounding chromatin to their integration site into the host genome cell. This so-called chromatin positional effects influences the expression levels of the transgene and tends to silence its expression over time. Bacterial artificial chromosomes (BACs) are vectors that can accommodate inserts of up to 400 kb. Due to the large cloning capacity, BACs can harbour an entire locus with all or most of the regulatory elements controlling the expression of a gene. Therefore, BACs contain their own natural chromatin domain and are subjected to chromatin positional effects to a lesser extend or not at all. This makes cell lines generated with BAC-based expression vectors more predictable in terms of protein production and stability. In this chapter, we explore the use of BACs as expression vectors for recombinant protein production in mammalian cells.