Dissemin is shutting down on January 1st, 2025

Published in

Cambridge University Press, Annals of Glaciology, 60(53), p. 249-256, 2012

DOI: 10.3189/2012aog60a087

Links

Tools

Export citation

Search in Google Scholar

Partitioning effects from ocean and atmosphere on the calving stability of Kangerdlugssuaq Glacier, East Greenland

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

AbstractWe use the 7 km retreat of Kangerdlugssuaq Glacier (KG), East Greenland, to examine the mechanisms, interactions and relative significance of atmospheric forcing and ice/ocean interactions. Hydrographic data from 1991, 1993 and 2004 show that subtropical waters are common in Kangerdlugssuaq Fjord (KF), and that surface waters were warm in 2004 relative to 1991 and 1993. The main water column was nonetheless warmest in 1991. We contend that while flow of subtropical waters into fjords provides a setting in which rapid glacier retreat can occur, the triggering of retreat depends on additional environmental factors. The climatic variables standing out in our study of KG and KF are air temperature and katabatic winds. Both had strong positive anomalies during winter 2004/05, when KG retreated. We show that proglacial ice melange was absent and that fjord freeze-up did not occur until 11 April 2005, due to warm and windy conditions. We demonstrate that this setting is unusual and hypothesize that exposure to open water in winter months caused the retreat. Calculation of ice-front melt rates shows that discharge of basal meltwater, first from runoff and subsequently from frictional basal heating, should intensify the interaction between glacier and fjord.