Dissemin is shutting down on January 1st, 2025

Published in

American Geophysical Union, Journal of Geophysical Research. Solid Earth, 9(120), p. 6085-6101, 2015

DOI: 10.1002/2015jb011929

Links

Tools

Export citation

Search in Google Scholar

Thermodynamics of the MgO-FeO-SiO2 system up to 140 GPa: Application to the crystallization of Earth's magma ocean

Journal article published in 2015 by C.‐E H. E. D. Boukaré, C.‐E-E. Boukaré, Y. Ricard, G. Fiquet ORCID
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

At the end of Earth's accretion and after the core-mantle segregation, the existence of a basal magma ocean at the top of the CMB depends on the physical properties of mantle materials at relevant pressure and temperature. Present-day deep mantle structures such as ultralow-velocity zones (ULVZs) and low-shear velocity provinces (LLSVPs) might be directly linked to the still ongoing crystallization of a primordial magma ocean. We provide the first steps towards a self-consistent thermodynamic model of magma ocean crystallization at high-pressure. We build a solid-liquid thermodynamic database for silicates in the MgO-FeO-SiO2 system from 20 GPa to 140 GPa. We use already published chemical potentials for solids, liquid MgO and SiO2. We derive standard state chemical potential for liquid FeO and mixing relations from various indirect observations. Using this database, we compute the ternary phase diagram in the MgO-FeO-SiO2 system as a function of temperature and pressure. We confirm that the melt is lighter than the solid of same composition for all mantle conditions but at thermodynamic equilibrium, the iron-rich liquid is denser than the solid in the deep mantle. We compute a whole fractional crystallization sequence of the mantle and show that an iron rich and fusible layer should be left above the CMB at the end of the crystallization.