Published in

American Society of Mechanical Engineers, Journal of Engineering for Gas Turbines and Power, 4(129), p. 908

DOI: 10.1115/1.2720539

Links

Tools

Export citation

Search in Google Scholar

Rotary Kiln Slow Pyrolysis for Syngas and Char Production From Biomass and Waste — Part II: Introducing Product Yields in the Energy Balance

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

A microscale electrically heated rotary kiln for slow pyrolysis of biomass and waste was designed and built at the University of Perugia. The reactor is connected to a wet scrubbing section, for tar removal, and to a monitored combustion chamber to evaluate the lower heating value of the syngas. The system allows the evaluation of gas, tar, and char yields for different pyrolysis temperature and residence time. The feeding screw conveyor and the kiln are rigidly connected; therefore a modification of the flow rate implies a modification of the inside solid motion and of residence time. Part I of the paper describes the theoretical and experimental evaluation of the working envelope of the reactor, that is, rotational speed as a function of feedstock density and humidity content, to obtain pyrolysis conditions inside the kiln. This paper describes the development and resolution of an energy balance of the reactor under pyrolysis conditions. Once the rotational speed n is fixed, the aim of the balance is to obtain the yield of wood biomass pyrolysis products such as syngas, tar, and char. Results can be used to choose the correct rotational speed of kiln and feeding screw before doing the real pyrolysis test.