Published in

Springer Verlag, Journal of Thermal Analysis and Calorimetry, 1(114), p. 91-99

DOI: 10.1007/s10973-012-2875-4

Links

Tools

Export citation

Search in Google Scholar

Thermal behavior of silicophosphate gels obtained from different precursors

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Phosphosilicate glasses are of great interest in important fields, such as optical active systems, energy generating systems, humidity sensors, and as materials for biomedical applications. Many studies were accomplished to establish the influence of different reaction parameters on the evolution and final structure of sol–gel prepared phosphosilicate gels. In the present work, we studied the thermal behavior of the silicophosphate gels obtained starting with different phosphorous precursors, the influence of these precursors on the composition and structure of the resultant gels, and their evolution with thermal treatment. By Fourier transform infrared spectroscopy (FT-IR), thermogravimetric and thermodifferential analysis (DTA/TG), and Differential Scanning calorimetry coupled with Mass Spectrometry (DSC-MS), it was established that the type of the precursors essentially influences the composition and structure and consequently the thermal behavior of the obtained gels. In the case of triethylphosphate precursor, all used methods of investigation have shown that the ester is trapped in the silica matrix and it is eliminated during the thermal treatment. Triethylphosphite partially hydrolizes and reacts with the silica network during post-preparation thermal treatment. Only in the case of H3PO4, an interaction with TEOS takes place and leads to Si–O–P bond formation. By thermal treatment, the gels with different composition and structure lead to materials with different properties.