Published in

American Geophysical Union, Journal of Geophysical Research, D21(104), p. 26137-26160, 1999

DOI: 10.1029/1999jd900428

Links

Tools

Export citation

Search in Google Scholar

Inverse Modeling of Methane Sources and Sinks Using the Adjoint of a Global Transport Model

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

An inverse modeling method is presented to evaluate the sources and sinks of atmospheric methane. An adjoint version of a global transport model has been used to estimate these fluxes at a relatively high spatial and temporal resolution. Measurements from 34 monitoring stations and 11 locations along two ship cruises by the National Oceanographic and Atmospheric Administration have been used as input. Recent estimates of methane sources, including a number of minor ones, have been used as a priori constraints. For the target period 1993--1995 our inversion reduces the a priori assumed global methane emissions of 528 to 505 Tg(CH 4 ) yr -1 a posteriori. Further, the relative contribution of the Northern Hemispheric sources decreases from 77% a priori to 67% a posteriori. In addition to making the emission estimate more consistent with the measurements, the inversion helps to reduce the uncertainties in the sources. Uncertainty reductions vary from 75% on the global scale to #1% on the grid-scale (8 # x10 # ), indicating that the grid scale variability is not resolved by the measurements. Large scale features such as the interhemispheric methane concentration gradient are relatively well resolved and therefore impose strong constraints on the estimated fluxes. The capability of the model to reproduce this gradient is critically dependent on the accuracy at which the interhemispheric tracer exchange and the large-scale hydroxyl radical distribution are represented. As a consequence, the inversion-derived emission estimates are sensitive to errors in the transport model and the calculated hydroxyl radical distribution. In fact, a considerable contribution of these model errors cannot be ignored. This underscores that source quantification by inverse modeling is limited ...